A Kinetics Study of the Reaction of HO₂ with SO₂ and NO¹⁸

W. A. Payne,^{1b,2} L. J. Stief,^{2a} and D. D. Davis^{* 2b,3}

Contribution from the Astrochemistry Branch, Laboratory for Extraterrestrial Physics, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, and the Chemistry Department, University of Maryland, College Park, Maryland 20742. Received April 11, 1973

Abstract: Using the photochemical ${}^{18}O_2$ competitive isotope labeling technique, rate constants have been determined for reaction of the hydroperoxyl radical with the atmospheric gas SO₂. All measurements were made relative to the disproportionation reaction HO₂ + HO₂ \rightarrow H₂O₂ + O₂. At 300°K the rate constant for reaction of SO₂ with HO₂ was found to be $(8.7 \pm 1.8) \times 10^{-16}$ cm³ molecule⁻¹ sec⁻¹. The quoted uncertainty reflects the uncertainty in the measurement of the rate constant ratio $k_2/(k_7)^{1/2}$. Because of existing uncertainties in the value of k_7 , however, the possible range of values in k_2 is 8.2×10^{-16} to 1.5×10^{-15} cm³ molecule⁻¹ sec⁻¹. Also using the photochemical ${}^{18}O_2$ competitive isotope labeling technique, it has been possible to estimate the value of the rate constant for reaction of HO₂ with NO. The rate constant for this system, k_3 , was found to be 3×10^{-13} cm³ molecule⁻¹ sec⁻¹ with the uncertainty in its value being a factor of ± 3 . The possible importance of secondary reactions in the determination of k_2 and k_3 is discussed.

We have previously used the photochemical ¹⁸O₂ competitive isotope labeling technique⁴ to study the important reaction

$$HO_2 + CO \longrightarrow CO_2 + OH$$
 (1)

In that study, we found reaction 1 to be quite slow with the data yielding an upper limit for the rate constant for this process of $k_1 = 1.5 \times 10^{-20}$ cm³ molecule⁻¹ sec⁻¹.⁴ These results clearly showed that reaction 1 cannot be considered as an important process for the conversion of CO to CO₂ in either the stratosphere or the troposphere of the earth. It also is now apparent that this reaction will be of negligible importance as a means of maintaining the stability of the CO₂ atmosphere on Mars.⁵

In this study, we have further explored the possible important reactions of the hydroperoxyl radical with two additional atmospheric trace gases, SO_2 and NO. The most likely reaction in both cases would consist of the abstraction of an O atom from the HO₂ species with the production of the more reactive OH radical, *i.e.*

$$HO_{2} + SO_{2} \longrightarrow SO_{3} + OH \qquad \Delta H_{rx} = -19 \text{ kcal/mol} \quad (2)$$

$$HO_{2} + NO \longrightarrow NO_{2} + OH \qquad \Delta H_{rx} = -10 \text{ kcal/mol} \quad (3)$$

An examination of the literature has revealed that for only one of these reactions, (3), has an experimental measurement been made, and this measurement was of an indirect nature.⁶

The possible importance of reactions 2 and 3, when

combined with the atmospheric processes 4 and 5, is

$$OH + CO \longrightarrow CO_2 + H$$
 (4)

$$H + O_2 + N_2 \longrightarrow HO_2 + N_2$$
 (5)

seen to be the chain conversion of SO_2 to SO_3 and NO to NO₂. The SO₃ formed in reaction 2 would than be expected to react with H₂O (probably in a heterogeneous process) to form the familiar sulfuric acid aerosol. On the other hand, the formation of NO₂ from reaction 3 would give rise to the photochemical production of atomic oxygen which, in turn, could result in the production of O₃ and the further oxidation of a wide assortment of hydrocarbons.

Since the mechanisms for conversion of NO to NO_2 and SO_2 to SO_3 are now considered to be of major importance both in the natural and perturbed atmosphere, we have undertaken a kinetic investigation of reactions 2 and 3. The technique employed in this study has been the photochemical ¹⁸O₂ competitive isotope labeling method. All measurements were carried out at 298 °K.

Experimental Section

A schematic drawing of the photolysis system is shown in Figure 1. The gas handling system utilized in these experiments consisted of a conventional high-vacuum line equipped with high-vacuum Teflon-seated valves. The system was maintained Hg free. Low pressures (1 mTorr to 1 Torr) were measured with a 1-Torr Granville–Phillips capacitance manometer head; high pressures were measured with either a 200-Torr Granville–Phillips or a 0–760-Torr Wallace and Tiernan gauge. The reaction cell in all experiments was a 500-cm³ spherical Pyrex vessel equipped with a suprasil window which transmitted radiation at wavelengths >1650 Å. The window was attached to the cell with Varian "Torr Seal."

The light source used throughout this study was a microwave powered mercury resonance lamp. The output of the lamp was examined on a McPherson 1/2 meter vacuum monochromator and found to emit 98% of its radiation at 1849 and 2537 Å with the intensity of the two lines being approximately equal. All other emission lines from the lamp (2% of total) were at wavelengths >2537 Å. Calculations based on known extinction coefficients⁷

^{(1) (}a) The results from this research were first reported at the Symposium on "Sources, Sinks, and Concentrations of CO and CH₄ in the Earth's Environment," a joint meeting of the AGU and AMS, St. Petersburg, Florida, Aug 1972. (b) The research reported on here is part of a thesis to be submitted to the Graduate School of the University of Maryland in partial fulfillment of the requirements for the Masters degree in Chemistry.

^{(2) (}a) NASA/Goddard Space Flight Center; (b) University of Maryland.

⁽³⁾ This author would like to acknowledge the Climatic Impact Assessment Program, Office of the Secretary, Department of Transportation, and the National Science Foundation RANN Program (Grant No. GI-363338X) for support of this research.

⁽⁴⁾ D. D. Davis, W. A. Payne, and L. J. Stief, Science, 179, 280 (1973).

⁽⁵⁾ M. B. McElroy and T. M. Donahue, *Science*, 177, 986 (1972).
(6) H. S. Johnston and Zafonte, work cited in National Bureau of Standards Report No. 10447.

^{(7) (}a) K. Watanabe, M. Zelikoff, and E. C. Y. Inn, Air Force Cambridge Research Center Technical Report No. 53-23 (1953); (b) N. Washida, Y. Mori, and I. Tanaka, *J. Chem. Phys.*, **54**, 1119 (1971); (c) D. Golomb, K. W. Watanabe, and F. F. Marmo, *ibid.*, **36**, 958 (1962); (d) B. A. Thompson, P. Harteck, and R. R. Reeves, Jr., *J. Geol. Res.*, **68**, 6431 (1963).

for the gases H₂O, CO, O₂, N₂, and NO showed that none of these gases or any of the possible products from this system (e.g., CO₂ and H₂O₂) absorbed 2537-Å radiation significantly at the pressures used. Although SO₂ does absorb significantly at 2537 Å ($k = 5 \text{ cm}^{-1}$ atm⁻¹),^{7d} control experiments discussed in the next section showed that this does not lead to formation of the products C¹⁶O₂ or $C^{16,\,18}O_2.$ In these experiments, therefore, no attempt was made to block the 2537-Å line. Actinometry at 1849 Å was carried out using two methods. In the first approach, measurements were made on the amount of CO2 produced when 20 Torr of H2O was irradiated in the presence of 1 to 3 Torr of CO. This method assumes the quantum yield for dissociation of H₂O into H and OH is unity at 1849 Å and that there are no loss mechanisms for OH other than reaction with CO to produce CO2. The second method involved the photolysis of N₂O at 1849 Å where the quantum yield for N_2 production is 1.44.⁸ The results of both methods agreed to within 10% and a value of 3.5×10^{15} photons/cm²/sec was obtained for the intensity of the lamp.

The ${}^{18}\text{O}_2$ (99%) used in this study was obtained from Miles Laboratories, Inc., in 100-cm3 break-seal bulbs. A mass spectrum analysis showed that the major impurities in the gas were C¹⁸O₂ and $C^{16, 18}O_2$. These impurities were removed by passing the O_2 through a liquid N₂ trap filled with glass beads. Subsequent analysis showed this to be an efficient method of removing the CO₂ impurity. Carbon monoxide and N2 were obtained from the Matheson Co., Inc. The nitrogen (99.999% purity) was used without further purification; traces of iron carbonyl were removed from the CO with a liquid N_2 trap filled with glass beads. The SO_2 was obtained from Baker Chemical Co. After degassing at -196° . mass spectrum analysis showed the impurity level to be <0.05%. The gas NO was Matheson Co. chemical grade; it was purified by first degassing at -196° followed by distillation from a trap at -183°. A mass spectrum analysis of the purified gas indicated that the NO₂ level was <0.1%.

In a typical experimental run, the procedure was to prepare the reaction mixture (H₂O, CO, O₂, N₂, and SO₂), allow 10-15 min mixing time, and then commence irradiation of the mixture with the resonance lamp for a period of 1 to 3 min. After the desired irradiation time, the condensable products and reactants were trapped at -196° and noncondensable products and reactants pumped away. The products and reactants remaining were then allowed to warm to room temperature and subsequently the cold finger on the photolysis vessel was reduced to -130° using an *n*-pentane slush. At this temperature CO₂, which was the major product of interest in this study, has a vapor pressure of 2 Torr, SO₂ has a vapor pressure of 5 mTorr, and all of the remaining products and reactants have vapor pressures of <1 mTorr. Thus, the CO₂ produced in the reaction was measured without significant interference from other gases. The CO₂ product was then transferred to a removable collecting vessel and attached directly to the inlet of the CEC 21-620 mass spectrometer for isotopic analysis.

In all experiments reported on in this study, the source of H atoms was the photolysis of 20 Torr of H₂O. Based on the extinction coefficient^{7a} of 1.5 cm⁻¹ atm⁻¹ at 1849 Å, it was calculated that 30% of the incident radiation at this wavelength would have been absorbed.

Results and Discussion

As was described in an earlier publication from our laboratories⁴ the photochemical ¹⁸O₂ isotope labeling technique involves a measurement of the relative rates of reaction of HO₂ with a known reactant (in this case either SO₂ or NO) *vs.* HO₂ itself. In this system, therefore, the extent of each reaction is given by the rate of formation of C^{16,18}O₂ *vs.* C¹⁶O₂ (see reaction schemes 6, 4, 5, 2, 4', 7, and 8).

The results from the SO_2 experiments are shown in Table I. Not included in Table I are the results from several control experiments. These included: experiments in which H₂O was left out of the photolysis mixture and the SO₂ pressure varied from 0.2 to 0.5 Torr; experiments in which the Hg resonance lamp was left off and the mixture allowed to stand for a period of 20 min;

(8) M. Zelikoff and L. M. Aschenbrand, J. Chem. Phys., 22, 1680 (1954).

Apparatus Used in the 1849 Å Photolysis of Mixtures of H₂O, CO, O^{18,18}, and N₂ (Ar).

Figure 1. Photolysis apparatus used in the ${}^{18}\mathrm{O}_2$ competitive isotope labeling technique involving kinetic studies on the reaction of HO_2.

Table I. Reaction of HO_2 with $SO_{2^{\alpha}}$

			Carbon dioxide yield, molecules $cm^{-3} sec^{-1}$ $\times 10^{-12}$	
SO ₂ , mTorr	CO, Torr	N ₂ , Torr	$C^{16}O_{2}$	C ^{16, 18} O ₂
82.5	1.0	18.0	12.1	3.7
82.5	1.0	18.0	13.1	5.3
82.5	1.0	18.0	12.8	2.2
109.0	1.0	18.0	13.1	5.8
175.0	10.0	9.0	11.5	7.0
175.0	10.0	9.0	15.7	9.9
250.0	10.0	9.0	11.8	12.8
325.0	10.0	9.0	10.2	15.4
400.0	10.0	9.0	11.8	20.2

 $^{\alpha}$ Pressure of reactants: $H_2O=20$ Torr, ${}^{18}O_2=1$ Torr. Photolysis time: 1–3 min. Intensity at 1849 Å: 3.5 \times 10¹⁵ photons/ cm²/sec.

experiments with CO left out of the photolysis mixture; and finally, experiments in which a Corning 7-54 filter was used between the Hg lamp and the reaction cell to eliminate the 1849-Å line while transmitting approximately 40% at 2537 Å. In all these control experiments less than 1 mTorr of CO₂ was detected. This is to be compared with a yield of 40 mTorr of CO₂, the smallest amount of CO₂ formed in the experiments reported in Table I.

The most noticeable features of the data presented in Table I are the steady increase in $R_{C^{16,16O_2}}$ with increasing amounts of SO₂ and the reasonably constant $R_{C^{16O_2}}$. Over the range of 82.5 to 400 mTorr of SO₂, the ratio of $R_{C^{16,16O_2}}/R_{C^{15O_2}}$ changes from approximately 0.3 to 1.7. This qualitative observation would indicate that HO₂ is being formed under our experimental conditions and that its reaction with SO₂ does occur at a measureable rate. The relatively constant $R_{C^{16O_2}}$ indicates that, under the conditions of the experiments in Table I, addition of increasing amounts of SO₂ did not lead to loss of OH and that all available OH radicals were quantitatively converted to CO₂. Experiments at 0.3 Torr of SO₂ (H₂O = 20 Torr, ${}^{18}O_2 = 1$ Torr) further showed that while $R_{C^{16O_2}}$ increased with an increase in

Figure 2. A plot of the ratio, $R_{C^{16,16}O_2}/(R_{C^{16}O_2})^{1/2}$, as a function of the SO₂ concentration where $R_{C^{16,16}O_2}$ and $R_{C^{16}O_2}$ are the rates of formation of the photolysis products $C^{16,18}O_2$ and $C^{16}O_2$ in units of molecules cm⁻³ sec⁻¹.

CO pressure from 1 to 10 Torr, there was no change in $R_{\text{C}^{16}\text{O}_2}$ in the presence of 19 Torr of CO. This further indicates complete scavenging of OH at the pressure of CO employed.

To treat the data presented in Table I quantitatively, a similar approach was used as reported earlier for the $HO_2 + CO$ system.⁴ In this case, the following reaction scheme was employed.

$$H_2O + h\nu \xrightarrow{k_0} H + {}^{16}OH$$
 (6)

$$^{16}OH + C^{16}O \xrightarrow{\kappa_4} C^{18}O_2 + H$$
 (4)

$$H + {}^{18}O_2 + M \xrightarrow{\longrightarrow} H^{18}O_2 + M \qquad (M = N_2, H_2O) \quad (5)$$

ŀ.

$$H^{18}O_2 + S^{16}O_2 \xrightarrow{\longrightarrow} S^{16, 16, 18}O_3 + {}^{18}OH$$
 (2)

$${}^{18}\text{OH} + \text{C}{}^{16}\text{O} \xrightarrow{\wedge 4^{\circ}} \text{C}{}^{16,18}\text{O}_2 + \text{H} \tag{4'}$$

$$H^{18}O_2 + H^{18}O_2 \xrightarrow{\kappa_7} H_2^{18}O_2 + {}^{18}O_2$$
 (7)

$$S^{16,16,18}O_3 + H_2O \xrightarrow{\kappa_8} H_2SO_4$$
(8)

The photochemical decomposition of H_2O_2 has been neglected in the above reaction scheme since its contribution to the formation of $C^{16,18}O_2$ is very small. Also the reaction $HO_2 + CO \rightarrow CO_2 + OH$ has been omitted from the above scheme due to its extremely small rate constant $<10^{-20}$ cm³ molecule⁻¹ sec⁻¹. As discussed above, the labeled CO₂ produced in reaction 4' is a direct measure of the extent of reaction 2. From a steadystate treatment of reactions 6, 4, 5, 2, 4', and 7, the following relationship may be derived

$$\frac{R_{\rm C^{16,18}O_2}}{(R_{\rm C^{16}O_2})^{1/2}} = \frac{k_2}{(k_7)^{1/2}} [\rm SO_2]$$

where $R_{C16,18O_2}$ and R_{C16O_2} are the rates of formation of

Table II. Variation of Light Intensity and ¹⁸O₂ Pressure^a

$I^{a} \times 10^{-15}$, photons/ cm ² /sec	¹⁸ O ₂ , Torr	Range of SO₂ pressure, mTorr	$k_2 \times 10^{16}$, cm ³ molecule ⁻¹ sec ⁻¹
3.5	1.0	82.5-400	$8.7 \pm 1.8^{\circ}$
3.5	2.0	140-400	8 ± 2
14.0	1.0	250-400	12 ± 4

^a Pressure of reactants: $H_2O = 20$ Torr, CO = 1 Torr, $N_2 = 18$ Torr. Photolysis time: 1 to 4 min. ^b See Table I and Figure 2.

labeled and unlabeled CO_2 in units of molecules cm^{-3} sec⁻¹.

From the mathematical expression above, a plot of the ratio $R(C^{16, 18}O_2)/(R(C^{16}O_2))^{1/2}$ against [SO₂] should yield a straight line with the slope equal to the rate constant ratio $k_2/(k_7)^{1/2}$. Figure 2 shows the results of such a plot. For those pressures where there were two or three separate experiments, the point shown represents the average value of $R(C^{16, 18}O_2)/(R(C^{16}O_2))^{1/2}$. The line drawn through the points is based on a weighted least-squares treatment of the data. From the slope and using the preferred value⁹ of $k_7 = 3.3 \times 10^{-12} \text{ cm}^3$ molecule⁻¹ sec⁻¹, we obtain the result $k_2 = (8.7 \pm 1.3)$ \times 10⁻¹⁶ cm³ molecule ⁻¹ sec⁻¹. The quoted error limit was obtained by assigning an experimentally determined uncertainty $(\pm 15\%)$ to each value of $R(C^{16, 18}O)/$ $(R(C^{16}O_2))^{1/2} \times 10^{-6}$ in Figure 2 (based on uncertainties in measurements of the heights of the mass 46 to 44 peaks and the time of photolysis) and by drawing lines of maximum and minimum slope through the indicated error bars. Although a slight negative intercept is observed in Figure 2, within the experimental uncertainty of these measurements this intercept could also be given a small positive value. The latter case is what would be expected since a very small amount of $C^{16, 18}O_2$ would have been formed via the photolysis of the product $H_2^{18}O_2$.

In addition to the experiments reported in Table I and Figure 2, a study was made of the effect of increasing the pressure of ${}^{18}O_2$ and the effect of increasing the light intensity. These experiments were each done at three different SO₂ pressures and the data treated quantitatively as described above to derive values for k_2 . Good linear plots of $R(C^{16}, {}^{18}O_2)/(R(C^{16}O_2))^{1/2} vs$. [SO₂] were obtained. The results of these experiments are summarized in Table II. It may be seen that within the experimental error, increasing the ${}^{18}O_2$ pressure from 1 to 2 Torr or increasing the light intensity from 3.5×10^{15} to 1.4×10^{16} photons cm⁻² sec⁻¹ has no effect on the value derived for the rate constant, k_2 .

In addition to the reaction scheme 6, 4, 5, 2, 4', 7, and 8, several other processes must also be considered for their possible influence on the observed ratios of $R_{C16,18O_2}/R_{C16O_2}$. Many of these reactions have already been discussed in an earlier publication⁴ and, thus, will not be treated here in any detail, *i.e.*

$$^{18}O_2 + h\nu (1849 \text{ Å}) \longrightarrow 2^{18}O$$
 (9)

- $^{18}O + C^{16}O + M \longrightarrow C^{16,18}O_2 + M$ (10)
 - ${}^{18}O + H{}^{18}O_2 \longrightarrow {}^{18}OH + {}^{18}O_2$ (11)
 - $H + H^{18}O_2 \longrightarrow {}^{18}OH + {}^{18}OH$ (12)
 - $H + {}^{18}O_3 \longrightarrow {}^{18}OH + {}^{18}O_2$ (13)

(9) (a) A. C. Lloyd, National Bureau of Standards Report No. 10447, 1971; (b) D. L. Baulch, D. D. Drysdale, and A. C. Lloyd, "Evaluated Kinetic Data for High Temperature Reactions," Vol. 1, Butterworths, London, 1972.

Journal of the American Chemical Society | 95:23 | November 14, 1973

Suffice it to say that in all cases in which SO₂ was absent from the reaction mixture, processes 9–13 could account for at most 6% of the C^{16, 18}O₂ formed, and this number is more likely to be < 2%.

With SO_2 added to the system, a large number of new reactions become possible, *e.g.*

$$OH + SO_2 + M \longrightarrow HSO_3 + M$$
 (14)

$$S^{16}O_2 + h\nu (1849) \longrightarrow S^{16}O + {}^{16}O$$
 (15)

$$^{6}O + S^{16}O_2 + M \longrightarrow S^{16}O_3 + M$$
 (16)

$${}^{16}O + {}^{18}O_2 + M \longrightarrow {}^{16, 18, 18}O_3$$
 (17)

$$H + {}^{16,18,18}O_3 \longrightarrow {}^{18}OH + {}^{16,18}O_2$$
 (18)

$$H + SO_2 + M \longrightarrow HSO_2 + M$$
(19)

$$H + CO + M \longrightarrow HCO + M$$
 (20)

$$SO_2 + h\nu (2537) \longrightarrow SO_2^{*1} \longrightarrow h\nu + SO_2$$
 (21)

$$SO_2^{*1} \longrightarrow SO_2^{*3}$$
 (22)

$$SO_2^{*3} + {}^{18}O_2 \longrightarrow S^{16,16,18,18}O_4$$
 (23)

$$H + S^{16, 16, 18, 18}O_4 \longrightarrow S^{16, 16, 18}O_3 + {}^{18}OH$$
 (24)

$$S^{16,16,18}O_3 + C^{16}O \longrightarrow C^{16,18}O_2 + S^{16}O_2$$
 (25)

$$S^{16,16,18}O_3 + H \longrightarrow {}^{18}OH + S^{16}O_2$$
(26)

Qualitative evidence for the possible importance of reaction 14 was the observation that, at low CO pressures (1 Torr), addition of higher pressures of SO₂ (>0.2 Torr) led to a decrease in $R_{C^{10}O_2}$. These data are summarized in Table III. From a steady-state treat-

Table III. Reaction of OH with $SO_{2^{\alpha}}$

SO ₂ , mTorr	$R_{16_{\rm CO_2}}$, molecule cm ⁻³ sec ⁻¹ $\times 10^{-13}$	
0	5.2	
250	3.7	
325	3.0	
400	2.6	

^a Pressure of reactants: $H_2O = 20$ Torr, CO = 1 Torr, ${}^{18}O_2 = 1$ Torr, $N_2 = 18$ Torr. Photolysis time: 1 min. Intensity at 1849 Å: 1.4×10^{16} photons cm⁻² sec⁻¹.

ment of reactions 6, 4, and 14, the following relationship may be derived

$$\frac{R^{0}_{CO_{2}} - R_{CO_{2}}}{R^{0}_{CO_{2}}} = \frac{k_{14}(SO_{2})(M)}{k_{4}(CO)}$$

where $R_{CO_2}^0$ is the rate of formation of $C_{CO_2}^{16}$ in the absence of SO₂, and R_{CO_2} is the rate in the presence of SO₂. Thus, a plot of $(R^0 - R)/R^0$ vs. SO₂/CO should give a straight line with zero intercept and a slope equal to $k_{14}(M)/k_4$. The data in Table III were used to prepare such a plot. From the slope of 1.4 and a value of $\hat{k}_4 = 1.3 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1},^{10} \text{ we obtain}$ the result $k_{14}(M) = 1.9 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1}$. For our system, this implies $k_{14} = 1.5 \times 10^{-31} \text{ cm}^6$ molecule⁻² sec⁻¹ for $M = N_2 + H_2O$ (18 and 20 Torr, respectively). The only value for k_{11} that we are aware of in the literature is that calculated by Wheeler¹¹ from measurements by McAndrew and Wheeler¹¹ on the effect of SO₂ on recombination rates in propane-air flames. Wheeler estimates $k_{14+19} = 1.1 \times 10^{-31} \text{ cm}^6$ molecule⁻² sec⁻¹ at 2080 °K. Fair and Thrush¹² have

determined that $k_{19} < 1.5 \times 10^{-33}$ cm⁶ molecule⁻² sec⁻¹ at 298 °K and that reaction 14 is the major contributor to the value for k_{14+19} deduced by Wheeler. Thus, values for k_{14} at 2080 °K obtained from flame studies and at 298 ° from the present work are both of the order of 10^{-31} cm⁶ molecule⁻² sec⁻¹. More recently Davis and Schiff¹³ have made preliminary measurements of OH + SO₂ + He \rightarrow HSO₂ which gave $k_{14} = 2 \times 10^{-32}$ (\pm factor 2) cm⁶ molecule⁻² sec⁻¹. It is expected that H₂O would be at least 10 times more efficient as a third body than He.

Both processes 16 and 17 involve the initial formation of ¹⁶O from the photodecomposition of S¹⁶O₂ at 1849 Å, reaction 15. The rate of production of ¹⁶O will be significant since the SO₂ absorption coefficient at 1849 Å is 100 cm⁻¹ atm^{-1,7c} However, using available rate constants for reaction 16 and 17,^{14,15} it is seen that the dominant reaction is 16 (*e.g.*, $k_{16}/k_{17} \cong 50$). From the above arguments is also follows that reaction 18 can be discarded as unimportant.

Because significant amounts of $S^{16, 16, 18}O_3$ could be formed via reaction 2 and 16, it is of some importance that reactions 25 and 26 be shown to be negligible compared with reaction 8. In this case, even though rate constants are not available for these three processes, arguments can be given which show reaction 8 to be the dominant reaction path. Evidence supporting this conclusion is found in the observation that aerosol was produced in the photolysis vessel for photolysis times of approximately 3 min (note: no quantitative data were taken at times longer than 3 min). This presumably would follow from reaction 8 and the subsequent condensation reaction between H2SO4 and H2O molecules. A final observation, which would tend to rule out reaction 26 as significant, is the results from those experiments carried out at increased light intensity (Table II). The argument here is that since reaction 26 involves two reactants, both directly dependent on the light intensity, the rate of reaction 26 should depend on the square power of I_0 . However, in experiments in which I_0 was increased by a factor of 4, no change (within the experimental uncertainty) was observed in the value of the rate constant k_2 .

The sequence of reactions 21-24 represents still another mechanism which could have produced H¹⁸O and hence C^{16,18}O₂ in this study. The important intermediate in this scheme is the yet unidentified species S^{16,16,18,18}O₄. The SO₄ species has previously been suggested as a possible important intermediate in the photooxidation of SO₂ in the atmosphere.¹⁶ In our system, if this reaction had been important, it would again be expected that the measured rate constant, k_2 , would have shown a significant dependence on the light intensity. As indicated in the previous discussion of reaction 26, no such dependence was observed even with a fourfold change in I_0 .

The final set of secondary reactions which needs to be considered in the SO_2 -HO₂ system are processes 19 and 20. If important, they would have tended to make the observed rate constant too low. In this case, a com-

(16) P. Urone and W. H. Schroeder, Environ. Sci. Technol., 3, 436

2653 (1972)

(1969).

⁽¹³⁾ D. D. Davis and R. Schiff, unpublished data.

⁽¹⁴⁾ D. D. Davis, R. Schiff, and S. Fischer (O + SO₂ + M), paper in preparation.
(15) R. E. Huie, J. T. Herron, and D. D. Davis, J. Phys. Chem., 76,

⁽¹⁰⁾ F. Stuhl and H. Niki, J. Chem. Phys., 52, 3671 (1972).

⁽¹¹⁾ R. Wheeler, J. Phys. Chem., 66, 229 (1962).

⁽¹²⁾ R. W. Fair and B. A. Thrush, Trans. Faraday Soc., 65, 1550 (1969).

parison of the rate constants for reaction 5 with those of reactions 19 or 20 (e.g., $k_5 = 5.4 \times 10^{-32} \text{ cm}^6$ molecule⁻² sec⁻¹, ¹⁷ $k_{19} = 1.5 \times 10^{-33} \text{ cm}^6$ molecule⁻² sec⁻¹, ¹² and $k_{20} = 0.8 \times 10^{-34}$ cm⁶ molecule⁻² sec⁻¹, ¹⁸ clearly shows that even with the maximum pressures of 0.5 Torr of SO₂ and 10 Torr of CO present, the rate of reaction 5 at 1 Torr of O₂ would be some 60 times greater than that for reaction 19 or 20. In addition, the fact that the observed rate constant k_2 did not change when the pressure of ¹⁸O₂ was increased from 1 to 2 Torr (Table II) shows that reactions 19 and 20 were not important compared with reaction 5.

As indicated in the introduction, no previous measurements of the rate constant for reaction 2 have been reported in the literature. However, since a direct comparison with other values cannot be made, it is perhaps important that upper and lower limits to k_2 be discussed in terms of the reference reaction 7. An examination of the literature,⁹ for example, shows that although the preferred value for k_7 is 3.3×10^{-12} cm³ molecule⁻¹ sec⁻¹, values for this rate constant range from a low of 2.9 \times 10⁻¹² to a high of 9.5 \times 10⁻¹² cm³ molecule $^{-1}$ sec $^{-1}$. If one takes this range of values to represent the upper and lower limits for the rate constant of reaction 7, then it follows that the reported rate constant for reaction 2 could have maximum and minimum values of 1.5 \times 10⁻¹⁵ and 8.2 \times 10⁻¹⁶ cm 3 molecule⁻¹ sec⁻¹, respectively.

The results from experiments involving the reactant NO, reaction 3, were somewhat more difficult to interpret than those from the HO_2 -SO₂ system. These results, therefore, should be considered as only semiquantitative in value.

In the investigation of reaction 3, initial experiments were carried out in which 50 to 100 μ of NO was added to gas mixtures consisting of 20 Torr of H₂O, 1 Torr of CO, 1 Torr of ¹⁸O₂, and 20 Torr of N₂. However, in contrast to the results from the SO₂-HO₂ system, the NO-HO₂ system was found to be very sensitive to addition of even small amounts of NO. Thus, in one experiment 50 mTorr of NO was added to the above gas mixture with the result that the rate of production of CO2 increased by about a factor of 5 and the ratio of labeled to unlabeled CO₂ was \sim 3:1. Also, the absolute yield of labeled CO2 was nearly eight times greater than the amount of added NO, indicating that not only was NO reacting very rapidly with HO₂ to form the product NO₂, but that the NO₂ was being converted back to NO. The most likely reaction to explain the latter observation would be process 27, *i.e.*

$$H + N^{16,18}O_2 \longrightarrow N^{18}O + {}^{16}OH$$
 (27)

$$\rightarrow N^{16}O + {}^{18}OH$$

In subsequent experiments to minimize the possible reaction of H with NO₂, the pressure of NO was reduced to 1 mTorr and the light intensity was reduced by a factor of 20 (photolysis time = 1 min). In this case the maximum amount of NO₂ that could have been present was 1 mTorr. Thus, the rate of H atom removal *via* reaction 5 would have been \sim 5 times faster than by reaction 27 ($k_{27} = 4.8 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1}$

sec⁻¹; $k_5 = 4.3 \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-1} \text{ sec}^{-1} \text{ for } \text{M} = \text{H}_2\text{O}$.^{19, 20}

Since the kinetic expression for the ratio of $R_{C^{16,18}O_2}/[R_{C^{18}O_2}]^{1/2}$ with NO as the reactant would be of the same form as the equation for the reactant SO₂, it follows that when

$$\left(\frac{R_{C^{16},1^{8}O_{2}}}{[R_{C^{16}O_{2}}]^{1/2}}\right)_{NO} = \left(\frac{R_{C^{16},1^{8}O_{2}}}{[R_{C^{16}O_{2}}]^{1/2}}\right)_{SO_{2}}$$

then $k_2(SO_2) = k_3(NO)$. Under the conditions outlined above (1 mTorr of NO and photolysis time = 1 min), it was found that

$$\left(\frac{R_{\rm C^{16},18O_2}}{[R_{\rm C^{16}O_2}]^{1/2}}\right)_{\rm NO} = 5.3 \times 10^6 \text{ cm}^{-3/2} \text{ molecule}^{1/2} \text{ sec}^{-1/2}$$

and the ratio of labeled to unlabeled CO₂ was 1.4. An examination of the SO₂ data shows that at an SO₂ concentration of 11.7×10^{15} molecules cm⁻³ a similar value for $R_{\text{C}^{16,18}\text{O}_2}/[R_{\text{C}^{16}\text{O}_2}]^{1/2}$ was measured. Using the expression $k_2(\text{SO}_2) = k_3(\text{NO})$, a value of k_3 is thus calculated of $\sim 3 \times 10^{-13}$ cm³ molecule⁻¹ sec⁻¹, the uncertainty being at least a factor of ± 3 .

A comparison of the rate constant reported in this work with the only other number published in the literature⁶ ($k_3 \simeq 10^{-15}$ cm³ molecule⁻¹ sec⁻¹) shows a discrepancy of nearly two orders of magnitude. Other values for k_3 , which are at this writing unpublished, are those reported by Niki²¹ and Simonaitis and Heicklen.²² Niki²¹ has an indirect measurement which suggests a value of $\sim 4 \times 10^{-13}$ for k_3 ; whereas, Simonaitis and Heicklen in a photochemical study have given a value of $k_3 \ge 1.5 \times 10^{-13}$ cm³ molecule⁻¹ sec⁻¹. It would appear, therefore, that all recent measurements of k_3 are in reasonably good agreement.

Summary and Conclusions

Using the photochemical ¹⁸O₂ competitive isotope labeling technique, rate constants have been determined for reaction of HO₂ with SO₂ and NO. At 300°K the rate constants for these two processes were found to be 8.7×10^{-16} and 3×10^{-13} cm³ molecule⁻¹ sec⁻¹, respectively. The reasonably fast rate constant found for the HO2-NO system would clearly indicate this process as being of major importance in the net conversion of NO to NO₂ in the lower atmosphere and the dominant reaction of the HO₂ species. On the other hand, the rate constant found for reaction 2 would initially indicate that this process is probably only of minor importance in the conversion of SO₂ to SO_3 in the unperturbed as well as urban atmosphere. However, until more realistic estimates can be made of the HO₂ concentration, under widely differing meteorological conditions, the actual importance of this process must remain somewhat uncertain. In the lower stratosphere the rate of reaction of SO₂ with HO₂ would

⁽¹⁷⁾ W. Wong and D. D. Davis, Int. J. Chem. Kinet., in press.

⁽¹⁸⁾ J. J. Ahumada, J. V. Michael, and D. T. Asborne, J. Chem. Phys., 57, 3736 (1972).

⁽¹⁹⁾ R. F. Hampson, Ed., "Survey of Photochemical and Gas Kinetics Rate Data for Twenty-Eight Reactions of Interest in Atmospheric Chemistry," typescript, National Bureau of Standards, 1973, J. Phys. Chem. Ref. Data, submitted for publication.

⁽²⁰⁾ Climatic Impact Assessment Program, Monograph No. 1, "The Natural Stratosphere," typescript, April 1973, prepared by the Scientific Panel on the Natural Stratosphere, Ft. Lauderdale, Florida.

⁽²¹⁾ H. Niki, private communication.

⁽²²⁾ R. Simonaitis and J. Heicklen, report presented at the CIAP Workshop, National Bureau of Standards, Oct 1972.

now appear to be more significant than the $SO_2 + O(^{3}P) + M$ reaction in leading to the conversion of SO_2 to SO_3 and sulfuric acid aerosol. The point should

Temperature Jump Relaxation Kinetics of the Chelation of Nickel(II) and Cobalt(II) with Some Aromatic Ligands¹

Joseph C. Williams and Sergio Petrucci*

Contribution from the Polytechnic Institute of Brooklyn, Brooklyn, New York 11201. Received February 21, 1973

Abstract: The temperature jump relaxation kinetics of Ni²⁺ with anthranilate ion at 25° and salicylate and 5-sulfosalicylate ions at temperatures between 15 and 35° and Co²⁺ with salicylate and 5-sulfosalicylate ions at temperatures between 15 and 35° and Co²⁺ with salicylate and 5-sulfosulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfo-sulfobeen studied and the results reported here. In all cases the forward rate constant k_t appears to be significantly smaller than that required by the "normal" Eigen chelation mechanism in terms of the product $(1/S)K_0k_{ex}$ (with 1/Sa statistical factor, generally equal to 0.2, K_0 the Fuoss outer-sphere preequilibration constant, and k_{ex} the solvent exchange rate constant determined from nmr measurements). For nickel(II) sulfosalicylate, k_t is the same, within experimental error, as for nickel(II) salicylate. However, because of the extra charge of the sulfonate group and consequently larger K_0 , one would expect a much larger rate constant k_t for this ion with respect to the salicylate ion. That this is not the case is suggested by the activation parameters ΔH_t^{\pm} and ΔS_t^{\pm} being comparable for both ligands. The preceding is reflected in measurements of complexation rates of Co²⁺ with salicylate and sulfosalicylate ions, the rate constants being within a factor of 2 of each other. A discussion of the statistical reason for this similarity in the rate constants for the salicylate and sulfosalicylate ions is given in terms of charge delocalization with respect to the point of attack at the reaction site. For nickel(II) salicylate comparison between ΔH_{ex}^{\pm} and ΔS_{ex}^{\pm} with the quantities ($\Delta H_t^{\pm} - \Delta H_0$) and ($\Delta S_t^{\pm} - \Delta S_0$) (with ΔH_0 and ΔS_0 the outer-sphere activation parameters) suggests that the source of the deviation from the normal chelation mechanism is entropic.

The kinetics of chelation of ionic complexation reactions has been the subject of many discussions and investigations in the past.² One may discuss the equilibrium between a divalent metal cation MS_6^{2+} (with S a solvent molecule) and a monovalent bidentate ligand $(L-L)^-$ in terms of the Eigen multistep mechanism

$$MS_{6^{2+}} + L - L^{-} \underbrace{\overset{K_{0}}{\longleftarrow}} MS_{5^{2+}}, L - L^{-}$$

$$MS_{6^{2+}}, L - L^{-} \underbrace{\overset{k_{2}}{\longleftarrow}}_{k_{-2}} (MS_{5} - L - L)^{+} \underbrace{\overset{k_{3}}{\longleftarrow}}_{k_{-3}} \left(MS_{4} \underbrace{\overset{L}{\longleftarrow}}_{L} \right)^{+}$$
(1)

where MS_{6}^{2+} , $L-L^{-}$ is an outer-sphere ion pair, $(MS_{5}-L-L)^{+}$ the metal ligand monodentate complex, and

$$\left(MS_{4} \left\langle \begin{matrix} L \\ L \end{matrix} \right)^{+} \right)^{+}$$

the chelate complex. By applying the rate equations to scheme 1 and imposing a steady state condition on the intermediate, $d(MS_5-LL)^+/dt = 0$, with the additional requirement of the preequilibration of the first step, one obtains the relations^{3,4} in terms of the overall

(1) This work is part of the thesis of Joseph C. Williams in partial fulfillment of the requirements for the degree of Ph.D., at the Polytechnic Institute of Brooklyn. Support by the IBM Corporation in the form of a graduate fellowship to J. C. W. is acknowledged.

(2) (a) F. Basolo and R. G. Pearson "Mechanism of Inorganic Reactions," 2nd ed, Wiley, New York, N. Y., 1967, p 224. (b) R. G. Pearson and O. P. Anderson, *Inorg. Chem.*, 9, 39 (1970), and literature references quoted therein.

(3) G. G. Hammes and J. I. Steinfeld, J. Amer. Chem. Soc., 84, 4639 (1962).

(4) M. Eigen and L. DeMaeyer in "Techniques of Organic Chemistry," Vol. VIII, Part II, 2nd ed, S. L. Fries, E. S. Lewis, and A. Weissberger, Ed., Interscience, New York, N. Y., 1963, p 895. rate constants $k_{\rm f}$ and $k_{\rm r}$.

$$k_{\rm f} = K_0 k_2 k_3 / (k_3 + k_{-2}) \tag{2}$$

$$k_{\rm r} = k_{-2}k_{-3}/(k_3 + k_{-2}) \tag{3}$$

For an interchange dissociative process (I_d), the second step in the above scheme will have a rate constant k_2 equal to $k_{\rm ex}$ (the one for solvent exchange) within a statistical factor^{5,6} $1/S \simeq 0.2$.^{5,6} K_0 may be calculated through the Fuoss relation⁷

$$K_0 = (4\pi Na^3/3000)e^b e^{-bxa/(1+xa)}$$
(4)

where the symbols $b = |z_1 z_2| e^2 / a DkT$ and $\gamma_{\pm}^2 = e^{-bxa/(1+\kappa a)}$ are⁷ the Bjerrum parameter and the activity coefficient according to Debye and Hückel. k_{ex} is the experimental pseudo-first-order constant for solvent exchange as determined by nmr ¹⁷O line broadening.⁸

It is apparent that in the majority of the cases, if $(k_3/k_{-2}) \gg 1$

$$k_{\rm f} = K_0 k_2 = (1/S) K_0 k_{\rm ex}$$

$$k_{\rm r} = k_{-2} (k_{-3}/k_3)$$
(5)

and the closing of the chelate ring is faster than the breaking of the first metal-ligand bond ("normal chelation").

Evidence of the converse condition $(k_3/k_{-2}) \ll 1$ has

(5) C. H. Langford and T. R. Stengle, Annu. Rev. Phys. Chem., 19, 193 (1968).

(6) C. H. Langford and T. R. Stengle, Coord. Chem. Rev., 2, 349 (1967).
(7) R. M. Fuoss, J. Amer. Chem. Soc., 80, 5059 (1958).

(8) T. J. Swift and R. E. Connick, J. Chem. Phys., 37, 307 (1962); 41, 2553 (1964).